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Abstract Electromagnetic properties of line-

periodical arrangements of passive loaded dipole scat-

terers are studied. An analytical solution for eigen-

waves propagating along infinite lines of dipoles is pre-

sented. Conditions of existence of guided-wave sohl-

tions are established. It is shown that in arrays of

capacitively-loaded antennas very rapid phase varia-

tions along the line are possible, which can possibly

be used to realize wide-band superdirective reflectors.

1. INTRODUCTION

Electromagnetic of periodic structures is a very old

andwell developed field of research. Various spatially-

periodic arrangements areused in many practical de-

vices, such as microwave and optical filters, array an-

tennaa, lw+ers. However, this topic remains occurrent

interest. Very much attention in the literature has

been recently payedto electromagnetic properties of

periodical structures, especially in view of potential

applications in light-wave technology. Nowadays, new

applications in microwave filters and other devices are
dkcussed. Linear periodical arrangements ofsmall in-

homogeneities (small disk patches or small holes in the

ground plane) have been recently studied experimen-

tally, with interesting resonance effects revealed [1], [2].

Waveguide channels inphotonic crystals can be real-

ized, for example, by removing one line of inclusions.

This can be considered as a periodic perturbation of a

regular crystal, andtreated with similar techniques as

other periodic arrangements.

In the antenna theory, electromagnetic of periodical

structures is the key of understanding antenna arrays.

Field coupling of antennas inan array is usually con-

sidered as a parasitic factor since this can cause scan

blindness effect. Foranarray ofsmall dipole antennas

field coupling has been studied for example in [3].

Physically, this effect is connected to so called Wood

anomalies of gratings, caused by possible excitation of

higher-order Floquet modes or surface modes in the

array. This is in fact the same phenomenon which

is utilizedin guided-mode resonant optical filters [4],

[5]. Incaseof antenna arrays, toachieve asuperdirec-

tive operation excitation of adjacent antenna elements

should be out of phase or similar to that. It has been

shown [6], [7] that such excitation impossible in arrays

ofpassive resonant scatterers (conductive cavities with

slot openings and resonant grooves have been consid-

ered).

Here we consider a conceptually simple periodic

electromagnetic system in which all practically inter-

estingeffects can bereslized. Wesolve the correspond-

ing problem using analytical means and reveal various

modes of operation as dependent on the properties of

the array elements and the frequency. In this pre-

sentation the emphasis is on the waveguide properties

of periodical arrangement of small particles along a

straight line.

In this study we assume that every inclusion can be

modelled as an electric (or, using duality, magnetic)

dipole. That is, the geometrical size of every sepa-

rate inclusion is small compared to the wavelength.

For example, these can be short pieces of conducting

wires, small dielectric spheres orother similar objects.

Loading short antennas by bulk loads (or using coated

spheres or coated wire antennas for example), thepo-

larizability can be changed. However, as the electrical

size is assumed to be small, the radiation properties are

still that of a short dipole antenna. Here we consider

the case when all the dipoles are dh-ected along the

axis of the structure. Noamumption is made regard-

ing the distance between inclusions and the full-wave

interaction between all particles is taken into account.

11. EIGENVALUE EQUATION AND THE INTERACTION

FIELD

Geometry of theproblem isshownin Figurel: small

dipole particles are periodically amangedalongacer-

tainaxis in space. Electromagnetic parameters of the

surrounding isotropic space are denoted by EO andpo

although the theory is not restricted to the free-space

background. Polarizability of every inclusion we de-

note by a. All the induced dipole moments are dl-

rected along the axis z.

A. Eigenvalue equation

For an arbitrarily chosen dipole on the line array

(position z = O)

P(O) = CZEIOC (1)

where EIOC is the locdfieldc reatedb yexternalsources

andallthe other particles. Assuming that the external
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Fig. 1. Periodical arrangement of longitudinally directed

dipole particles along a straight line. The system is infi-

nite in the z direction. Each inclusion is an electric dipole

(wire antenna) which can he loaded hy bulk passive loads.

Examples of capacitive and incluct,ive loadings are shown.

field E,xt is a plane wave (or it is absent), we can make

use of the Floquet theorem and write

p(nd) = e -~qndp(o) (2)

where g is the propagation factor which we will de-

termine in this study. The local field is created by

external sources and bytheother dipoles in the array:

Eloc = Ee.t

(+ 5 + &+*) ‘-’k’n’de”’q”dp(’
Tt= -m, r’ #o

(3)

where we have substituted the electric dipole fields (we

use the common notation k = w-).

Let us denote by ,6 the inter-action constant

.

( “)~ = ~ &. & + & e-,klnlde-,qnd

.=-co. .s0,.
(4)

With this notation, at the position of the reference

dipole p(0) the local field is

EIo. = E.., + ,6P(O) (5)

If there is no incident field, then p(0) = cr~p(0). Thus,

we have the eigenwdue equation a/? = 1 or

: =n=_5_&[&+*] ‘-’k’n’de-””d
(6)

The imaginary part of the interaction constant L3 can

be calculated exactly in closed form, and it can be also

found from the energy conservation condition. The

real part has to be evaluated numerically, and the cor-

responding series converges rather quickly.

III. PROPAGATION OF WAVES ALONG LINES OF

DIPOLES

A. General relations

To study traveling or exponentially decaying waves

along the z axis we shall study the interaction constant

(4) and the eigenvalue equation (6) in more detail, for

the case when g # O. If there is some radiation loss

of energy and there is energy dksipation in the in-

clusions, the eigenvalue equation reads (assuming that

Im{l/a} = Im{l/a,ti} + Im{l/m~s.})

Re ~ +j&+jIm{J-}=~ (7’)
{} a ~IOss

This is a complex equation in which the real and imag-

inary parts should vanish, If the particles have no dis-

sipation, the propagation factor q can be real. For real

propagation factors, the last equation takes the form

Re ~ +j&+jIm{~}=
{} a mom

co
k sin knd

jIm{/3} + & ~ [-+

1

— cos qnd (8)
(rid)’

n= 1

Because in the regionl kd < qd < 2m – kd the dipole

radiation term k3/ (6rTEo) in equation (8) cancels out,

propagating guided waves can exist under thk condi-

tion. Physically, this cancellation comes about because

I) of the energy conservation requirement: the power ra-

diated by each particle equals the power received by

the same particle, so that the line does not radiate any

power in the far zone.

If the line is lossy, the propagation factor obviously

must be a complex number. Guided waves (with some

loss of energy) are possible as in other slow-wave struc-

tures. The field is confined to the line if kp has non-

zero imaginary part.

If q is real but smaller than k, no guided waves can

exist in lines of passive scatterers. In this case the

imaginary part of the right-hand side of (8) is smaller

that of the left-hand side. The power received by every

particle (right-hand side) is smaller than that radiated

by the same particle (left-hand side) because some part

of the power is radiated into a cylindrical wave.

B. Guided waves in lossless structures

For the guided-wave solutions with real propagation

factors we have q > k and imaginary transverse wave

number kp. In this situation electromagnetic fields

exponentially decay in the transverse direction. Ex-

istence of guided-wave solutions and the dispersion

relation of these waves can be determined from the

1Note here that the mlagmary part of the interaction constant is
2m-permdic wth respect to qd.
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Fig. 2. Normalized imaginary part of the interaction constant

for the guided-mode regime.

corresponding complex eigenvalue equation discussed

above.

For Iossless particles, the scattering loss of every in-

clusion should be balanced by the interaction field cre-

ated by other inclusions. To determine if this is possi-

ble, we consider the imaginary part of the eigenvalue

equation (8):

n=l -

This series can be expressed in closed form. The

result shows that guided-mode solutions are permitted

by the energy conservation in the region kd < qd <

2rr – kd (this is also true in the regions kd + 2~m <

qd < 2n(7n + 1), m = 1,2,.. .). This is illustrated

by Figure 2, where the regions of the validity of the

energy conservation are clearly seen.

Next, let us consider the real part of the eigenvalue

equation. The real part of the interaction constant

has to be evaluated numerically. The result is shown

in Figure 3. Calculations are made only for the region

kd < qd < 2rT – kd where the guided solutions are pos-

sible (the imaginary part of the dispersion equation is

satisfied). On the floor of the graph, curves of con-

st ant levels of the function are shown. These curves

show dispersion curves for the guided modes in case

if the left-hand side of the real part of the dkpersion

equation (that is, Re{l/a}) is frequency-independent.

The family of dispersion curves for this case is afso

shown in Figure 4. Here, both guided-wave and leaky

wave solutions are shown. The two regimes are sep-

arated by the line q = k. For q < k the solutions

to the dispersion equation me leaky modes, because

kp = ~- is real and the line of dipoles radL

qd 00
kd

Fig, 3. Normalized real part of the interaction constant for

the guided-mode solutions.

ates power. For larger normalized frequencies kd > n

there are no guided-wave solutions, since the energy

conservation requirement cannot be satisfied. This is

so because for larger kd there exist higher-order radi-

ating Floquet modes which take power away from the

guide.

Thus, depending on the value of the real part of

the inverse polarizability, guided waves can exist even

at low frequencies, having zero cut-off value. Let us

consider an example of dipole particles made of short

metal sections of conducting wires. The correspond-

ing vafues of R,e{ l/a} are frequency-independent but

large, as dkcussed above, and there are no guided-wave

solutions. To make the guided-wave solutions possible,

the wire dipole particles must be loaded, There are

two possibilities: loads which increase capacitance, for

example bulk capacitances or high-permittivity cover-

ings of wires, and resonance loads. In the first case,

which corresponds to weak frequency dependence of

the polarizability (frequency independent in the quasi-

static approximation), dispersion curves have the form

shown in Figure 4. (in case of capacitive loads the real

part of the polarizability is of course positive, so not

all the curves can be realized in this way). In csse of

the resonant loads (inductive loading of short dipole

antennas), the left-hand side of the real part of the dis-

persion equation (8) quickly vazies with the frequency.

Thus, guided-wave solutions exist only in a very nar-

row frequency band. This situation can be afso visu-

alized using Figure 4, where one should assume that

with changing frequency (that is, varying kd), the con-

stant level shown at the curves quickly changes. In this

regime, very sharp resonances in the electromagnetic

response of the array should be expected.

These results show that very quick spatial variations
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Fig. 4. Dispersion curves for frequency-independent val-

ues of Re{l/a}. The corresponding normalized values

of xeod3Re{l/a} are shown near each curve. Curves for

r < gd < 27r —kd can he obtained by reflecting tbe picture

around the line kd = n. Solid lines correspond to guided-

wave solutions, and dash lines show the curves for leaky

modes.

of the currents induced on the inclusions (lzrge qd) are

possible even at low frequencies (small M), if the an-

tennas are capacitively loaded. We also observe that

the propagation factor q in this case slowly depends

on the frequency. This feature can be possibly used

to generate current distributions needed to realize su-

perdirective antenna patterns.

IV. CONCLUSION

Using analytical means, properties of periodical ar-

rangements of small passive scatterers have been ex-

plored. Balance between the power scattered by every

inclusion and that received by the same inclusion from

other inclusions in the array has been discussed and

used to determine the region of existence of eigenwaves

propagating along the line. It can be shown that both

narrow-band and wide-band strong reflection regimes

are possible depending on the load impedance of the

inclusions. Here, Wood anomalies can be identified

from the analysis of the power balance.

In particular, guided eigenmodes have been studied

in detail. Guided-wave modes cannot be excited by

plane waves in the infinite line, since these modes have

propagation constants larger than the wave number

in the background medium. That is why in reflection

only the classical Wood anomalies related to excitation

of higher-order Floquet modes can be seen. Waveguide

capacitive or inductive) where electromagnetic energy

can be stored. It is well known that superdirective

properties of array antennas (or passive arrays, such

as an array of grooves in conducting plane [7]) real-

ize if the adj scent elements are located at a distance

smaller than A/2 and excited out of phase. The same

is true for arrays of resonant reflectors, see e.g. [6].

Our results show that waveguide solutions for a line

of loaded dipole antennas indeed exist in the range

of propagation factors which include thks case. Thus,

we expect that similar phenomena can be realized in

simpler systems with bulk reactive loads. Interesting

enough that the required energy storage can be pro-

vided by non-resonant capacitive loads, which means

that guided modes with very rapid variations of the

fields along the line of antennas can exist in wide fre-

quency bands, so that no high-quality resonators are

necessary. Naturally, if a narrow-band operation is re-

quired, resonance loads can be used.
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modes can be excited in arrays of a finite number of

inclusions or by finite sources. These modes exist if

the paxticles are loaded by rezctive elements (either
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