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Abstract Electromagnetic properties of line-
periodical arrangements of passive loaded dipole scat-
terers are studied. An analytical solution for eigen-
waves propagating along infinite lines of dipoles is pre-
sented. Conditions of existence of guided-wave solu-
tions are established. It is shown that in arrays of
capacitively-loaded antennas very rapid phase varia-
tions along the line are possible, which can possibly

be used to realize wide-band superdirective reflectors.

I. INTRODUCTION

Electromagnetics of periodic structures is a very old
and well developed field of research. Various spatially-
periodic arrangements are used in many practical de-
vices, such as microwave and optical filters, array an-
tennas, lasers. However, this topic remains of current
interest. Very much attention in the literature has
been recently payed to electromagnetic properties of
periodical structures, especially in view of potential
applications in light-wave technology. Nowadays, new
applications in microwave filters and other devices are
discussed. Linear periodical arrangements of small in-
homogeneities (small disk patches or small holes in the
ground plane) have been recently studied experimen-
tally, with interesting resonance effects revealed [1], {2].
Waveguide channels in photonic crystals can be real-
ized, for example, by removing one line of inclusions.
This can be considered as a periodic perturbation of a
regular crystal, and treated with similar techniques as
other periodic arrangements.

In the antenna theory, electromagnetics of periodical
structures is the key of understanding antenna arrays.
Field coupling of antennas in an array is usually con-
sidered as a parasitic factor since this can cause scan
blindness effect. For an array of small dipole antennas
field coupling has been studied for example in [3].

Physically, this effect is connected to so called Wood
anomalies of gratings, caused by possible excitation of
higher-order Floquet modes or surface modes in the
array. This is in fact the same phenomenon which
is utilized in guided-mode resonant optical filters [4],
[5]. In case of antenna arrays, to achieve a superdirec-
tive operation excitation of adjacent antenna elements
should be out of phase or similar to that. It has been
shown [6], [7] that such excitation is possible in arrays
of passive resonant scatterers (conductive cavities with

slot openings and resonant grooves have been consid-
ered).

Here we consider a conceptually simple periodic
electromagnetic system in which all practically inter-
esting effects can be realized. We solve the correspond-
ing problem using analytical means and reveal various
modes of operation as dependent on the properties of
the array elements and the frequency. In this pre-
sentation the emphasis is on the waveguide properties
of periodical arrangement of small particles along a
straight line.

In this study we assume that every inclusion can be
modelled as an electric (or, using duality, magnetic)
dipole. That is, the geometrical size of every sepa-
rate inclusion is small compared to the wavelength.
For example, these can be short pieces of conducting
wires, small dielectric spheres or other similar objects.
Loading short antennas by bulk loads (or using coated
spheres or coated wire antennas for example), the po-
larizability can be changed. However, as the electrical
size is assumed to be small, the radiation properties are
still that of a short dipole antenna. Here we consider
the case when all the dipoles are directed along the
axis of the structure. No assumption is made regard-
ing the distance between inclusions and the full-wave
interaction between all particles is taken into account.

II. EIGENVALUE EQUATION AND THE INTERACTION
FIELD

Geometry of the problem is shown in Figure 1: small
dipole particles are periodically arranged along a cer-
tain axis in space. Electromagnetic parameters of the
surrounding isotropic space are denoted by ep and po
although the theory is not restricted to the free-space
background. Polarizability of every inclusion we de-
note by a. All the induced dipole moments are di-
rected along the axis 2.

A. Eigenvalue equation

For an arbitrarily chosen dipole on the line array
(position z = 0)

P(O) = aBc (1)

where Ejoc is the local field created by external sources
and all the other particles. Assuming that the external
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Fig. 1. Periodical arrangement of longitudinally directed
dipole particles along a straight line. The system is infi-
nite in the 2z direction. Each inclusion is an electric dipole
(wire antenna) which can be loaded by bulk passive loads.
Examples of capacitive and inductive loadings are shown.

field Eex: is a plane wave (or it is absent), we can make
use of the Floguet theorem and write

p(nd) = ¢ 7*"p(0) )

where g is the propagation factor which we will de-
termine in this study. The local field is created by
external sources and by the other dipoles in the array:

Eioc = Eext

— 1 1 ]k —3kin|d ~3qnd
LT G SR L 0
+ 2 e <(|n|d)3 + (nd)z) e e P (0)

n=—00,
®)
where we have substituted the electric dipole fields (we
use the common notation k = w,/€ofio).
Let us denote by 3 the interaction constant

= 1 1 3k _\ -sklnid,~sqnd
e | e e s | € e
n=_§"¢o 2meo ((|n|d)3 ('nd)2)
4)

With this notation, at the position of the reference
dipole p(0) the local field is

E]oc = Eext + ﬂP(O) (5)

If there is no incident field, then p(0) = af8p(0). Thus,
we have the eigenvalue equation a8 =1 or

ﬂ:

1 -~ 1 1 jk fnl
- —jkin|d _—gqnd
S= 2 o [(lnld)3 + (nd)z] ee
n=-—o00, n#0

(6)
The imaginary part of the interaction constant 3 can
be calculated exactly in closed form, and it can be also
found from the energy conservation condition. The

real part has to be evaluated numerically, and the cor-
responding series converges rather quickly.

III. PROPAGATION OF WAVES ALONG LINES OF
DIPOLES

A. General relations

To study travelling or exponentially decaying waves
along the z axis we shall study the interaction constant
(4) and the eigenvalue equation (6) in more detail, for
the case when g # 0. If there is some radiation loss
of energy and there is energy dissipation in the in-
clusions, the eigenvalue equation reads (assuming that
Im{1l/a} = Im{l/araa} + Im{1/cvi0ss })

1 K 1
Re {3} i + {52} =
ol Higpe timyg—y=8 (0
This is a complex equation in which the real and imag-
inary parts should vanish. If the particles have no dis-
sipation, the propagation factor q can be real. For real
propagation factors, the last equation takes the form

1 k3 1
Ro{ 2} +igeg +im {5} =
e (¢ +]67750+]m Qloss

cos knd
(nd)3

ksin knd

JIm{B} + j,‘rle—o Z + “nd)? ] cos gnd (8)

n=1

Because in the region® kd < qd < 27 — kd the dipole
radiation term k3/(6meo) in equation (8) cancels out,
propagating guided waves can exist under this condi-
tion. Physically, this cancellation comes about because
of the energy conservation requirement: the power ra-
diated by each particle equals the power received by
the same particle, so that the line does not radiate any
power in the far zone.

If the line is lossy, the propagation factor obviously
must be a complex number. Guided waves (with some
loss of energy) are possible as in other slow-wave struc-
tures. The field is confined to the line if &, has non-
zero imaginary part.

If g is real but smaller than k, no guided waves can
exist in lines of passive scatterers. In this case the
imaginary part of the right-hand side of (8) is smaller
that of the left-hand side. The power received by every
particle (right-hand side) is smaller than that radiated
by the same particle (left-hand side) because some part
of the power is radiated into a cylindrical wave.

B. Guided waves in lossless structures

For the guided-wave solutions with real propagation
factors we have ¢ > k and imaginary transverse wave
number kp. In this situation electromagnetic fields
exponentially decay in the transverse direction. Ex-
istence of guided-wave solutions and the dispersion
relation of these waves can be determined from the

1Note here that the imagnary part of the interaction constant is
2m-periodic with respect to gd.
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Fig. 2. Normalized imaginary part of the interaction constant
for the guided-mode regime.

corresponding complex eigenvalue equation discussed
above.

For lossless particles, the scattering loss of every in-
clusion should be balanced by the interaction field cre-
ated by other inclusions. To determine if this is possi-
ble, we consider the imaginary part of the eigenvalue
equation (8):

kd)? . rkdcosnkd  sinnkd
( 6) = Z [ 5 - ] cosngd  (9)
n=l

This series can be expressed in closed form. The
result shows that guided-mode solutions are permitted
by the energy conservation in the region kd < gd <
2% — kd (this is also true in the regions kd + 2rm <
gd < 2n(m + 1), m = 1,2,...). This is illustrated
by Figure 2, where the regions of the validity of the
energy conservation are clearly seen.

Next, let us consider the real part of the eigenvalue
equation. The real part of the interaction constant
has to be evaluated numerically. The result is shown
in Figure 3. Calculations are made only for the region
kd < qd < 2w — kd where the guided solutions are pos-
sible (the imaginary part of the dispersion equation is
satisfied). On the floor of the graph, curves of con-
stant levels of the function are shown. These curves
show dispersion curves for the guided modes in case
if the left-hand side of the real part of the dispersion
equation (that is, Re{1/a}) is frequency-independent.
The family of dispersion curves for this case is also
shown in Figure 4. Here, both guided-wave and leaky
wave solutions are shown. The two regimes are sep-
arated by the line ¢ = k. For ¢ < k the solutions
to the dispersion equation are leaky modes, because

k, = \/k? — ¢ is real and the line of dipoles radi-

e, Re(B)
3

nd®

Fig. 3.

Normalized real part of the interaction constant for
the guided-mode solutions.

ates power. For larger normalized frequencies kd > n
there are no guided-wave solutions, since the energy
conservation requirement cannot be satisfied. This is
so because for larger kd there exist higher-order radi-
ating Floquet modes which take power away from the
guide.

Thus, depending on the value of the real part of
the inverse polarizability, guided waves can exist even
at low frequencies, having zero cut-off value. Let us
consider an example of dipole particles made of short
metal sections of conducting wires. The correspond-
ing values of Re{1/a} are frequency-independent but
large, as discussed above, and there are no guided-wave
solutions. To make the guided-wave solutions possible,
the wire dipole particles must be loaded. There are
two possibilities: loads which increase capacitance, for
example bulk capacitances or high-permittivity cover-
ings of wires, and resonance loads. In the first case,
which corresponds to weak frequency dependence of
the polarizability (frequency independent in the quasi-
static approximation), dispersion curves have the form
shown in Figure 4. (in case of capacitive loads the real
part of the polarizability is of course positive, so not
all the curves can be realized in this way). In case of
the resonant loads (inductive loading of short dipole
antennas), the left-hand side of the real part of the dis-
persion equation (8) quickly varies with the frequency.
Thus, guided-wave solutions exist only in a very nar-
row frequency band. This situation can be also visu-
alized using Figure 4, where one should assume that
with changing frequency (that is, varying kd), the con-
stant level shown at the curves quickly changes. In this
regime, very sharp resonances in the electromagnetic
response of the array should be expected.

These results show that very quick spatial variations
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Fig. 4. Dispersion curves for frequency-independent val-
ues of Re{l/a}. The corresponding normalized values
of weod®Re{1/a} are shown near each curve. Curves for
7 < qd < 2w — kd can be obtained by reflecting the picture
around the line kd = . Solid lines correspond to guided-
wave solutions, and dash lines show the curves for leaky
modes.

of the currents induced on the inclusions (large gd) are
possible even at low frequencies (small kd), if the an-
tennas are capacitively loaded. We also observe that
the propagation factor g in this case slowly depends
on the frequency. This feature can be possibly used
to generate current distributions needed to realize su-
perdirective antenna patterns.

IV. CONCLUSION

Using analytical means, properties of periodical ar-
rangements of small passive scatterers have been ex-
plored. Balance between the power scattered by every
inclusion and that received by the same inclusion from
other inclusions in the array has been discussed and
used to determine the region of existence of eigenwaves
propagating along the line. It can be shown that both
narrow-band and wide-band strong reflection regimes
are possible depending on the load impedance of the
inclusions. Here, Wood anomalies can be identified
from the analysis of the power balance.

In particular, guided eigenmodes have been studied
in detail. Guided-wave modes cannot be excited by
plane waves in the infinite line, since these modes have
propagation constants larger than the wave number
in the background medium. That is why in reflection
only the classical Wood anomalies related to excitation
of higher-order Floquet modes can be seen. Waveguide
modes can be excited in arrays of a finite number of
inclusions or by finite sources. These modes exist if
the particles are loaded by reactive elements (either

capacitive or inductive) where electromagnetic energy
can be stored. It is well known that superdirective
properties of array antennas (or passive arrays, such
as an array of grooves in conducting plane [7]) real-
ize if the adjacent elements are located at a distance
smaller than A/2 and excited out of phase. The same
is true for arrays of resonant reflectors, see e.g. [6].
Our results show that waveguide solutions for a line
of loaded dipole antennas indeed exist in the range
of propagation factors which include this case. Thus,
we expect that similar phenomena can be realized in
simpler systems with bulk reactive loads. Interesting
enough that the required energy storage can be pro-
vided by non-resonant capacitive loads, which means
that guided modes with very rapid variations of the
fields along the line of antennas can exist in wide fre-
quency bands, so that no high-quality resonators are
necessary. Naturally, if a narrow-band operation is re-
quired, resonance loads can be used.
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